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ical interpretation of the scheme as consisting of a particle
streaming step followed by a collision results in a veryThe lattice Boltzmann equation describes the evolution of the

velocity distribution function on a lattice in a manner that macro- simple parallel logic that is well suited for implementation
scopic fluid dynamical behavior is recovered. Although the equation on massively parallel computers. The main advantage of
is a derivative of lattice gas automata, it may be interpreted as a the LB method is that the particle interpretation allows
Lagrangian finite-difference method for the numerical simulation

the use of very simple boundary conditions so that theof the discrete-velocity Boltzmann equation that makes use of a
parallel implementation may be used even for complexBGK collision operator. As a result, it is not surprising that numerical

instability of lattice Boltzmann methods have been frequently en- geometries. For this reason, one of the most successful
countered by researchers. We present an analysis of the stability applications of the LB method has been to simulations of
of perturbations of the particle populations linearized about equilib- flow through porous media [1, 2].
rium values corresponding to a constant-density uniform mean

The development of LG models was based on the obser-flow. The linear stability depends on the following parameters: the
vation that macroscopic behavior of fluid flow is not verydistribution of the mass at a site between the different discrete

speeds, the BGK relaxation time, the mean velocity, and the wave- sensitive to the underlying microscopic physics. Thus, mod-
number of the perturbations. This parameter space is too large els were developed based on the simplest possible particle
to compute the complete stability characteristics. We report some microworld that would lead to the incompressible Navier–
stability results for a subset of the parameter space for a 7-velocity

Stokes equation in the limit of small Knudsen number [3].hexagonal lattice, a 9-velocity square lattice, and a 15-velocity cubic
The methods successfully modeled incompressible fluidlattice. Results common to all three lattices are (1) the BGK relaxation

time t must be greater than As corresponding to positive shear viscos- flow but noise associated with the particle microworld ne-
ity, (2) there exists a maximum stable mean velocity for fixed values cessitated the introduction of some type of averaging pro-
of the other parameters, and (3) as t is increased from As the maximum cedure such as spatial, temporal, or ensemble averaging
stable velocity increases monotonically until some fixed velocity is

to characterize the macroscopic flow. A second difficultyreached which does not change for larger t. Q 1996 Academic Press, Inc.

is that LG methods have unphysical equations of state and
non-Galilean invariant flow. Finally, the transport coeffi-
cients that resulted from the microscopic collision rules1. INTRODUCTION
were inflexibly limited to small ranges of values [4].

In contrast, the numerical solution of the lattice Boltz-The lattice Boltzmann (LB) method is a recently devel-
oped computational scheme used to model fluids under a mann equation (LBE), as proposed by McNamara and

Zanetti [5], neglects individual particle motion resulting invariety of flow regimes. As a derivative of lattice gas (LG)
automata, the LB method deals with fluid dynamics from smooth macroscopic behavior. Further simplification of

the scheme is achieved by linearizing the collision operatorthe microscopic, kinetic level. However, as with the Boltz-
mann equation, the LB method describes the evolution [6]. A particularly simple linearized version of the collision

operator makes use of a relaxation towards an equilibriumof particle populations rather than attempting to follow
individual particle motion. Thus, the LB method has the value using a single relaxation time parameter. The relax-

ation term is known as the BGK [7] collision operator andflexibility of traditional particle methods, but it has the
numerical character of finite-difference schemes. The phys- has been independently suggested by several authors for
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use with this method [8–10]. Use of this collision operator originally developed by Broadwell [18] and recent work
by Inamuro and Sturtevant [19] includes many speeds.makes the computations much faster and allows flexibility

of the transport coefficients. Particle streaming and colli- Inamuro and Sturtevant used first, second, and third order
upwind finite difference discretizations of the discrete-ve-sion are explicitly computed by performing a type of ‘‘shift’’

operation on the parallel computer to represent the particle locity Boltzmann equation to study shock-wave structure,
conductive heat transfer, and chemical vapor deposition.streaming followed by a purely local operation for the

collision. The microscopic approach of the LB method However, they made use of a large velocity set that was
nearly Maxwellian in distribution and since their intentionassociates physical quantities with the discretization pa-

rameters: the time step is the time between particle colli- was to model rarefied flows, no Chapman–Enskog proce-
dure was used to assess continuum–limit behavior. Moresions and the lattice spacing is the distance a particle travels

in one time step. Again, the spirit of the approach is to recently, Nadiga and Pullin [20] have implemented a finite
volume numerical method to simulate discrete-velocityretain the simplest microscopic description that gives the

macroscopic behavior of interest. gases using collisions that achieve local thermodynamic
equilibrium.Application of a Taylor series expansion of the lattice

kinetic equation followed by a Chapman–Enskog expan- In contrast to these compressible methods, Reider and
Sterling [21] have studied the convergence behavior ofsion results in the typical hierarchy of equations; Euler,

Navier–Stokes, Burnett, etc. By selecting the appropriate different finite-difference approximations to the discrete-
Boltzmann equation for velocity sets that provide Navier–number of speeds and the appropriate form of the equilib-

rium distribution function, one may match the equations Stokes behavior in the incompressible and continuum lim-
its. Ancona [22] introduced the view that the LB methodthat result from the LB method with those of traditional

kinetic theory to the desired level. Higher level terms that is a finite-difference method for the solution of the macro-
scopic equations and generalized the method to includeare not matched represent behavior of the lattice gas that

differs from a Maxwellian gas. fully Lagrangian methods for the solution of partial differ-
ential equations.The most common application of the LB method has

been to fluid flow models for which only mass and momen- In traditional kinetic theory, the equilibrium velocity
distribution function is the maximum entropy state. Thus,tum are conserved. The Chapman–Enskog theory for these

models typically yields correct behavior to the Euler level any initial state will evolve towards a state of higher en-
tropy. This result is known as Boltzmann’s H-theorembut the Navier–Stokes level is correct only in the incom-

pressible limit. In other words, the incorrect terms become which ensures an increase of entropy, and ensures stability.
An H-theorem has been derived for some particle methodssmall as the square of the Mach number becomes small.

This approach has much in common with explicit ‘‘penalty’’ and a derivation for lattice gases is included in Ref. [23].
If one can guarantee that the equilibrium distribution func-or ‘‘pseudocompressibility’’ methods of solving incom-

pressible flows [11–13]. Complete energy-conserving mod- tion for LB methods is the maximum entropy state, then
stability can be guaranteed even though LB approaches areels that yield the correct form of the compressible continu-

ity, momentum, and energy equations have been not particle methods [24]. The problem with this approach,
however, is that one cannot usually find an equilibriumdeveloped by Alexander, Chen, and Sterling [14], McNa-

mara and Alder [15], Qian and Orszag [16], and Chen et al. distribution function that can simultaneously guarantee an
H-theorem and allow the correct form of the equations to[17]. We note that for any of the LB models, the transport

coefficients depend on the time step and lattice spacing. be obtained. In this paper, we limit our discussion to LB
schemes that have been developed for simulating the in-Another way of looking at this is that there is a ‘‘lattice

viscosity’’ or ‘‘numerical viscosity’’ that becomes small as compressible Navier–Stokes equations (i.e., simulation in
the low Knudsen number and low Mach number limits).the grid is refined (i.e., time step reduced for fixed particle

velocities). This brings us to an alternative view that the These schemes do not have an H-theorem and are there-
fore subject to numerical instability. Lattice Boltzmannhigher order terms in the Taylor series expansion of the

kinetic equation are not ‘‘physical’’ but may be considered results that are reported in the literature have typically
been performed under conditions that provide stable be-‘‘truncation error’’ of a finite difference approximation to

some continuous equation. havior. However, it is well known among LB researchers
that instability problems arise frequently. When the LBIndeed, an alternative view of the LB method is that it

is a particular space and time discretization of the discrete- method is viewed as a finite-difference method for solving
the continuum discrete-velocity Boltzmann equations, itvelocity Boltzmann equations. These equations are partial

differential equations (i.e., continuous in space and time) becomes clear that numerical accuracy and stability issues
should be addressed.that describe the evolution of particle populations that

have discrete speeds. Researchers have used a variety of In Section 2 the Chapman–Enskog procedure applied
to the continuum discrete-velocity Boltzmann equation isdiscrete-velocity models: models with a single speed were
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reviewed and the macroscopic equations corresponding to Equation (1) may be written in nondimensional form
by using a characteristic flow length scale L, referencea 7-velocity hexagonal lattice model are presented. Section

2 also introduces the new interpretation of the lattice Boltz- speed er , and density nr . Two reference time scales are
used, tc to represent the time between particle collisionsmann method as a particular discretization of the contin-

uum discrete-velocity Boltzmann equations. With this in- and L/er to represent a characteristic flow time. The refer-
ence speed may be selected to be the magnitude of theterpretation of the LB method, it is clear that a traditional

stability analysis is needed instead of entropy/H-theorem minimum nonzero discrete velocity. If only one speed is
used, then the velocity set for the nondimensional equa-approaches that prove useful for particle methods. In Sec-

tion 4 we present the von Neumann stability analysis of tions is simply a set of unit vectors. The resulting nondi-
mensional equation isthe lattice Boltzmann method for a uniform flow and report

results for the 7-velocity hexagonal lattice, a 9-velocity
square lattice, and a 15-velocity cubic lattice. We conclude
with some comments concerning the interpretation of the

­f̂i

­t̂
1 êi ? =̂f̂i 5 2

1
«t̂

( f̂i 2 f̂ eq
i ), (4)

stability results and comparison with other CFD stability
criteria.

where the caret symbol is used to denote non-dimensional
quantities êi 5 ei/er , =̂ 5 L=, t̂ 5 ter/L, t̂ 5 t/tc , and f̂i 52. THE LATTICE BOLTZMANN METHOD
fi/nr . The parameter « 5 tcer/L and may be interpreted as
either the ratio of collision time to flow time or as the ratioThis section provides a description of the Chapman–
of mean free path to the characteristic flow length (i.e.,Enskog expansion of the discrete-velocity Boltzmann
Knudsen number). We will not use the caret notation fur-equation and application of the lattice Boltzmann discreti-
ther but will assume that the equations are in nondimen-zation. The resulting LB method makes use of the follow-
sional form henceforth.ing definitions and conditions:

Application of the Chapman–Enskog method to these
(1) The particle populations f may only move with equations results in the long wavelength governing equa-

velocities that are members of the set of discrete velocity tions. This method requires the expansion of the distribu-
vectors ei . The corresponding populations are denoted fi . tion function in the small parameter « such that fi 5

f (0)
i 1 «f (1)

i 1 «2f (2)
i 1 ? ? ? , and f (0)

i is identified as f (eq)
i and(2) A collision operator with a single relaxation time,

the remaining terms can be referred to as f (neq)
i . The conti-t, is used to redistribute populations fi towards equilibrium

nuity or mass conservation equation to first order in « isvalues f eq
i . This is also referred to as a BGK collision

operator where t is inversely proportional to density [25].
For constant density flows t is a constant.

­n
­t

1 = ? (nu) 5 0, (5)(3) The equilibrium velocity distribution function is
written as a truncated power series in the macroscopic
flow velocity.

and the momentum equation to first order in « is
The discrete velocity Boltzmann equation then becomes

­

­t
(nu) 1 = ? (P(0) 1 P(1)) 5 0, (6)­fi

­t
1 ei ? =fi 5 2

1
t

( fi 2 f eq
i ), (1)

where P(l) is the momentum flux tensor and is defined as
where the velocity distribution function fi is constructed so
that macroscopic flow variables are defined by its moments:

P(l)
ab 5 O

i
eiaeib f (l)

i , (7)
Mass,

n ; O
i

fi ; (2) for l 5 0, 1. The constitutive relations for this tensor are
obtained by selecting a particular lattice geometry and
equilibrium distribution functional form and then proceed-

Momentum, ing to match moments of the distribution function with
terms in the Navier–Stokes equations.

As an example, when this is performed for a hexagonalnu ; O
i

fi ei . (3)
lattice with unit velocity vectors defined by ei 5 {cos(2f



STABILITY ANALYSIS OF LATTICE BOLTZMAN METHODS 199

(i 2 1)/6), sin(2f(i 2 1)/6)} for i 5 1, 2, ..., 6, a suitable which gives zero bulk viscosity as expected for the mon-
atomic gas when energy is conserved (i.e., when a 5 0 itequilibrium distribution function is found to be
can be shown that conservation of mass is equivalent to
conservation of energy).

f eq
0 5 na 2 nu2 (8) Note that these equations are not the standard Navier–

Stokes equations because there are derivatives of the den-
f eq

i 5
n(1 2 a)

6
1

n
3

ei ? u 1
2n
3

(ei ? u)2 2
n
6

u2, (9) sity in the second viscosity term on the right side of the
equation. If these gradients of density are negligible this
hexagonal lattice, discrete Boltzmann equation should be-

where a is a constant that determines the distribution of have approximately as the Navier–Stokes equations. Since
mass between the moving and nonmoving populations [26]. the gradients of the density are O(u2) (see Ref. [27, 28]),

The momentum flux tensor for this distribution function the unphysical terms in Eq. (11) are O(u3). Thus, although
is obtained by substituting Eq. (9) into Eq. (7). The re- the physics contains compressibility effects (that differ
sulting expression for P(0) is from the compressible Navier–Stokes equations), one may

come arbitrarily close to solving incompressible flow by
reducing the Mach number and thereby allowing informa-

P(0)
ab 5 3n

1 2 a
6

dab 1 nuaub , (10) tion to propagate throughout the domain while little con-
vection occurs. For this reason, no Poisson solver is re-
quired to determine the pressure and simple particle

which gives a Galilean invariant convective term in the reflections at boundaries may be used to invoke no-slip
momentum equation. By identifying the isotropic part of conditions. We also note that if the second viscosity l is
this tensor as the pressure, we obtain an ideal gas law zero, the complete compressible Navier–Stokes equations
equation of state (i.e., p 5 ((1 2 a)/2)n) and the gradient are given, but the bulk viscosity is then nonzero.
of the pressure in the momentum equation. Similarly, eval- There are differences between the incompressible Na-
uation of P(1) using standard Chapman–Enskog procedure vier–Stokes equations and the macroscopic behavior of
results in the final form of the momentum equation; the discrete-velocity Boltzmann equations because of the

asymptotic nature of the Chapman–Enskog method. The
differences may be attributed to Burnett level and higher
level terms or as small deviations from the above relationn

­ua

­t
1 nub

­ua

­xb for the kinematic viscosity. For this reason, previous LB
studies have reported comparisons between the Chapman–

5 2
­p
­xa

1
­

­xb
Sl

n S­nuc

­xc
dab 1 ua

­n
­xb

1 ub
­n
­xa
DD (11) Enskog prediction and numerical simulation measure-

ments of the viscosity (e.g., Kadanoff et al. [29]). However,
the Burnett level terms are expected to become negligible

1
­

­xb
Se S­ub

­xa
1

­ua

­xb
DD , as the global Knudsen number becomes small. Since the

Knudsen number is proportional to the Mach number di-
vided by the Reynolds number, the Burnett terms may be
classified with other ‘‘compressibility’’ effects and shouldwhere
become small as the Mach number approaches zero for a
fixed Reynolds number.

e 5 tn/4 (12) Thus, the discrete Boltzmann equation in dimensionless
form, Eq. (4), may be discretized and numerically simu-
lated to provide approximate solution to the continuityand
and momentum equations given by Eqs. (5) and (11), re-
spectively. The results can then be put back into dimen-
sional form using the reference quantities. Simulations mayl 5

tn(2a 2 1)
4

. (13)
come arbitrarily close to incompressible Navier–Stokes
behavior with differences being attributed solely to discre-
tization and compressibility effects.In two dimensions, the bulk viscosity is the sum of these

At this point we will narrow our view to a particulartwo so that
discretization of the non-dimensional discrete Boltzmann
equation. In particular, we will choose the lattice-Boltz-
mann method which is an exact Lagrangian solution forK 5

tna
2

, (14)
the convective derivatives. For a given convection velocity,
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this type of scheme is typically obtained by using an Euler energy is conserved allow specification of heat-transfer
boundary conditions using particle reflection conditions astime step in conjunction with an upwind spatial discretiza-

tion and then setting the grid spacing divided by the time well [14]. These simple boundary conditions make the LB
method particularly suited to parallel computing environ-step equal to the velocity. Discretization of Eq. (4) results

in the equation ments and the simulation of flows in complex geometries.
Although first-order discretizations have been used, the

LB method is second order in both space and time whenfi (x, t 1 Dt) 2 fi (x, t)
Dt

1
fi (x 1 ei Dx, t 1 Dt) 2 fi (x, t 1 Dt)

Dx contributions that result from discretization error are taken
to represent physics [21, 22]. The inclusion of this numerical
viscosity is accomplished by Taylor expanding Eq. (16)5 2

( fi x, t) 2 f (0)
i (x, t))

«t
. (15)

about x and t. When the second-order terms in this expan-
sion are included in the above Chapman–Enskog analysis,

Lagrangian behavior is then obtained by the selection the result is that the coefficient t in the transport coeffi-
of the lattice spacing divided by the time step to equal the cients is simply replaced by t 2 As (see Ref. [14]). Thus,
magnitude of ei , which was normalized so that the smallest the lattice contribution to the viscosity for this LB scheme
velocity magnitude is unity. When the equation is is negative, requiring the value of the relaxation time to
multiplied by Dt, the result is the cancellation of two terms be greater than half the time step to maintain positive
on the left side of the above equation, leaving only one viscosity. Note that third-order terms in the Taylor-series
term evaluated at t 1 Dt so that the method is explicit. expansion are necessarily of order «2 in the Chapman–

The next characteristic of the lattice Boltzmann method Enskog expansion. Thus, as with traditional kinetic theory,
is the selection of the time step to equal the reference there may be some error arising from the Burnett level
collision time (Dt 5 tc). The result is the cancellation of terms.
the Knudsen number in the denominator of the collision Since the LB method under consideration is valid only
term giving the following simple form that is commonly in the incompressible limit, the main dimensionless param-
referred to as the lattice Boltzmann equation (LBE), eter of interest is the Reynolds number. Convergence of

the solution to the incompressible Navier–Stokes equa-
tions for a fixed Reynolds number is then obtained byfi (x 1 ei Dt, t 1 Dt) 2 fi (x, t) 5 2

1
t

( fi (x, t) 2 f (0)
i (x, t)).

letting the Mach number become small enough to remove
(16) compressibility effects and by letting the lattice spacing

er Dt become small enough to ‘‘resolve’’ the flow. Reverting
to the caret notation for dimensionless quantities, theThis equation has a particularly simple physical interpre-

tation in which the collision term is evaluated locally and Reynold’s number for the hexagonal lattice may now be
writtenthere is only one streaming step or ‘‘shift’’ operation per

lattice velocity. This stream-and-collide particle interpreta-
tion is a result of the fully Lagrangian character of the
equation for which the lattice spacing is the distance trav- Re 5

LU
n

5
4NÛ

t̂ 2 1/2
, (17)

elled by the particles during a time step. Higher order
discretizations of the discrete Boltzmann equation typically
require several ‘‘shift’’ operations for the evaluation of
each derivative and a particle interpretation is less obvious. where N 5 L/Dx is the number of lattice spaces. The

dimensionless velocity is the characteristic Mach numberIn fact, the entire derivation of the LB method was origi-
nally based on the idea of generalizing LG models by (Û 5 U/er) which should be small to simulate incompress-

ible flow. Thus, the convergence at a given Reynoldssolving the LG Boltzmann equation and relaxing the exclu-
sion principle that particle populations be either zero or number is performed by increasing N while either increas-

ing t̂ and/or decreasing Û appropriately. For a decreaseone for each velocity [5]. It did not originally occur to
the authors that the LB method could be considered a in the value of Û, a proportionate increase in the number

of time steps is needed to reach the same flow evolu-particular discretization for the discrete Boltzmann equa-
tion [30]. tion time.

Concluding, the LB method makes use of first orderThe particle model allows boundary conditions to be
implemented as particular types of collisions. If popula- discretizations of the dimensionless discrete velocity Boltz-

mann equation in both time and space. The dimensionlesstions are reflected directly back along the lattice vector
along which they streamed, the result is a ‘‘no-slip’’ velocity time step and lattice spacing are set equal and numerical

contributions to viscosity are accounted for and consideredboundary condition. One may also define specular reflec-
tion conditions that yield a slip condition. Models for which to be part of the physics of the method. With these effects
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included, the LB method is a second order method in both where all of the j populations at a site enter through the
equilibrium distribution function on the right side of thespace and time but in the case of LB models developed

for incompressible Navier–Stokes simulation, care must equation. Taylor expanding g about f (0)
i results in the fol-

lowing equation:be taken to ensure that the Mach number is small enough
that the deviation from incompressible behavior is negli-
gible. f (0)

i 1 f 9i (x 1 eiDt, t 1 Dt)

(20)
5 gi( f (0)

j ) 1
­gi( f (0)

j )
­fj

f 9j (x, t) 1 O( f 9j (x, t)2).3. LATTICE BOLTZMANN LINEAR STABILITY

3.1. Theory Development
Since f (0)

i 5 gi( f (0)
j ), the resulting linearized system is

The lattice Boltzmann equation, Eq. (16), is an explicit
scheme for the computation of the particle population as-

f 9i (x 1 eiDt, t 1 Dt) 5 Gij f 9j (x, t), (21)sociated with each discrete velocity. It is a nonlinear
scheme due to the use of the equilibrium distribution func-

where Gij is the Jacobian matrix corresponding to the coef-tion in the collision term. This function is quadratic in
ficient of the linear term in Eq. (20) and does not dependvelocity (cubic for energy conserving models) and the den-
on location or time.sity and velocity are computed as sums over all of the

Spatial dependence of the stability is investigated bypopulations at a site. In an effort to assess the numerical
taking the Fourier transform of Eq. (21) to obtainstability of LB schemes with a linearized collision operator,

Benzi et. al. [31] and Grunau [32] performed stability analy-
Fi(k, t 1 Dt) 5 Gi jFj(k, t), (22)ses by neglecting nonlinear terms. Their linear analysis is

equivalent to studying the stability under conditions of
wherezero mean flow. They have shown that the stability in

such cases is wavenumber independent and is therefore
Gi j 5 diaghexp(2ik ? eiDt)jGij , (23)determined by the collision operator alone.

In contrast, we consider a von Neumann linearized sta-
and the wavenumber has units of inverse lattice spacing.bility analysis of the LB scheme that includes the lineariza-
These units are not the most common form for presenta-tion of all nonlinear terms about global equilibrium values
tion: if we define wavenumber using exp(22fik ? eiDt), thenof the populations (denoted by the overbar) that are based
k is the number of sine waves in the domain and the higheston some mean density, velocity, and internal energy for
resolution wavenumber is 1/(2Dx).energy-conserving models. Thus, we expand fi as

We observe that if the wavenumber is zero, the first
matrix becomes the identity matrix and the eigenvalues of

fi(x, t) 5 f (0)
i 1 f 9i (x, t), (18) Gij determine stability. In this case of uniform flow, if the

eigenvalues of Gij have modulus less than unity, then the
scheme is asymptotically stable. The eigenvalues are h1, 1where the global equilibrium populations f (0)

i are constants
2 1/tj, where the unity eigenvalues have multiplicity D 1that do not vary in space or time and depend only on the
1 in D dimensions, corresponding to microscopic mass andmean density and velocity. The fluctuating quantities f 9i momentum conservation. Thus, stability of uniform flowsare not equal to f (neq)

i because we have linearized about
is guaranteed if t . As.the equilibrium populations evaluated for a mean density

The elements of the matrix Gij include the linearizationand mean velocity. However, the density and velocity devi-
of the nonlinear terms in the equilibrium distribution func-ate from the mean values such that the local equilibrium
tion. As an example, the derivative with respect to fj ofpopulations vary in space and time. These compressible
the first nonlinear term in velocity of the equilibrium distri-disturbances are appropriate for stability studies of both
bution function, n(ei ? u)2 ispseudocompressiblity LB methods and energy-conserving,

fully compressible LB methods. If the perturbations are
2(ei ? ej)(ei ? u) 2 (ei ? u)2. (24)uniform in space, f 9i 5 f (neq)

i and we recover the stability
results for the collision term alone.

Stability has been investigated by using MathematicaeWe define the update operator for populations fi to be
version 1.2 to solve for eigenvalues of Gi j both algebraically
and numerically for several lattices and associated equilib-
ria. The following sections document the stability bound-gi( fj) 5 fi(x, t) 2

1
t

( fi(x, t) 2 f (0)
i (x, t)), (19)

aries as functions of the following five parameters; wave-
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number k, relaxation parameter t, velocity u, and particle
population distribution parameters a and b (introduced
for square and cubic lattices below).

3.2. Seven-Velocity Hexagonal Lattice Results

The lattice definition and equilibrium velocity distribu-
tion function for the hexagonal lattice is described in Sec-
tion 2 above. When the lattice Boltzmann equation is lin-
earized about a mean velocity and density, and a Fourier
transform is performed, the eigenvalues of the resulting
Jacobian matrix Gi j may be evaluated to assess linear stabil-
ity of the system. As mentioned above, if the wavenumber
is zero, t 5 As is the only linear stability boundary. Indeed,
numerical simulation results are consistently unstable if

FIG. 1. Hexagonal lattice maximum eigenvalue magnitude as functionthe value of t is too close to 0.5. This boundary has been
of wavenumber for t 5 0.5 for two cases. Dashed line is for a 5 0.3 and

well tested because there is considerable interest in using u 5 0.23. Solid line is for a 5 0.2 and u 5 0.2.
this LB method to simulate high-Reynolds number flow
and as t appoaches 0.5, the Reynolds number approaches
infinity. The fact that values of t slightly greater than one- results should be shifted slightly towards the stable parame-
half can lead to instability is attributed to the nonlinear ter domain.
terms in the equilibrium distribution function. The distribution of the mass between the nonmoving

The linearized stability in the hexagonal case depends population and the six moving populations is controlled
on the four parameters t, a, u, and k. Therefore, a complete by the parameter a. Since we are usually interested in high-
mapping of all stability boundaries is not computationally Reynolds number flows, we investigated the stability of
feasible for even this seven-velocity model. Since the veloc- the method as a function of a and u when t 5 As. An
ity and wavenumber are both vectors, a study was per- iterative scheme was used in which a value of a was selected
formed in which the angle between these vectors was varied and u was incrementally increased until the maximum ei-
while the other parameters remained fixed. The result for genvalue modulus exceeded unity. The neutral stability
the case studied was that the most unstable condition oc- boundary was obtained in this manner by varying the value
curred when the angle between the vectors was equal to of a from zero (equivalent to an energy-conserving model)
zero. Although there is no proof that this result holds for to near unity (for which almost all of the mass is stationary).
all parameter values, we have assumed that the velocity The resulting boundary is plotted as the left curve in Fig.
and the wavenumber vectors are aligned with the first
velocity vector for each lattice (i.e., the horizontal axis).
This assumption was made for all of the results that follow.

The second attempt at simplifying the analysis was to
determine if there was a single wavenumber that was con-
sistently the most unstable. When using a unit lattice spac-
ing, the highest resolvable wavenumber is equal to f. Fig-
ure 1 is a plot of the maximum eigenvalue magnitude of
Gi j as a function of wavenumber for two unstable conditions
when t 5 0.5. The solid line corresponds to u 5 0.2 and
a 5 0.2 and the dotted line is for u 5 0.23 and a 5 0.3.
In the first case the most unstable wavenumber is near f
and in the second case it is near 1.9. Thus, there is not a
single wavenumber that is always the most unstable and
therefore, in subsequent studies we evaluated eigenvalues
at wavenumbers from 0.1 to 3.1 in steps of 0.2 and the
wavenumber with the largest eigenvalue modulus was con-

FIG. 2. Stability boundaries as function of u and a for most unstablesidered to be the ‘‘most unstable wavenumber.’’ This
wavenumber for t 5 0.5. The left curve is the neutral stability boundary

coarse wavenumber resolution undoubtedly results in sta- for the hexagonal lattice. The right curve is the neutral stability curve
bility boundaries that are actually in an unstable parameter for the square lattice for mass distribution parameters related by b 5 1/

4 2 a/3.range. In other words, stability boundaries in the following
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the velocity is limited, high Reynolds number flow is ob-
tained by either increasing resolution or decreasing t to
values near one-half (i.e., near the linear stability
boundary).

3.3. Nine-Velocity Square Lattice Results

Another lattice that is commonly used for two-dimen-
sional incompressible flow simulations is the nine-velocity
square lattice defined by vectors, eI

i 5 hcos(f(i 2 1)/2),
sin(f(i 2 1)/2)j and eII

i 5 {cos(f(i 2 As)/2), sin(f(i 2 As)/2)}
for i 5 1, 4. The equilibrium distribution function for these
moving populations and a nonmoving population is
given by

FIG. 3. Stability boundaries as function of u and t for most unstable f eq
0 5 na 2 Sdnu2, (25)

wavenumber. The solid line is the neutral stability curve for the hexagonal
lattice for a 5 0.7. The middle curve (dash-dot) is the neutral stability

f I,eq
i 5 nb 1

n
3

eI
i ? u 1

n
2

(eI
i ? u)2 2

n
6

u2 (26)curve for the square lattice for a 5 Ff and b 5 Al. The dashed curve is the
neutral stability curve for the cubic lattice for a 5 Ak and b 5 0.1625.

f II,eq
i 5 n

(1 2 4b 2 a)
4

1
n
12

eII
i ? u

2. As the value of a is increased from near zero, the velocity
for which the LB scheme is stable increases to a maximum 1

n
8

(eII
i ? u)2 2

n
24

u2. (27)
of around one-third when a is near two-thirds. As a in-
creases further, however, the maximum stable velocity
again decreases. The data in Fig. 1 were taken near the The Jacobian matrix Gi j for this system is a 9 3 9 matrix

which again gives t 5 As as the only stability boundary forkink in the stability boundary curve near u 5 0.2. The
kinks are caused when a parameter change results in the homogeneous flow (k 5 0). The first numerical study for

this lattice was to determine if the most unstable wavenum-most unstable wavenumber shifting to a different eigen-
value. ber occurred at a single value. Unlike the results shown

in Fig. 1 for the hexagonal lattice, the most unstable wave-It is well known from simulations that as t is increased,
the LB method becomes stable at higher values of velocity number was consistently equal to about 2.3 when t 5 As. It

is not obvious why the value of 2.3 was the most unstablefor a given value of a. A study of this effect was performed
by selecting a 5 0.7 (near the most stable value in Fig. 2) wavenumber but it was consistently used in subsequent

studies when t was equal to 0.5.and then iterating the mean flow velocity and the relaxation
time to determine the neutral stability boundary. The re- With both a and b as mass distribution parameters, there

are five parameters in the matrix Gi j. The next numericalsults are presented in Fig. 3 as the solid curve. When t 5
As we see in both Fig. 2 and Fig. 3 that the maximum stable study performed on this system addressed the stability

for various mass distributions for fixed mean speed andmean flow velocity is near 0.32. As the value of t increases,
the maximum stable velocity is seen to decrease slightly relaxation time for the most unstable wavenumber. The

dotted lines in Fig. 4 delineate the stability boundariesand then increase and level off at a value of about 0.39.
The existence of such a limiting stable velocity is indica- when t 5 0.5 and u 5 0.3. Combinations of a and b that

lie between the two dotted lines result in linear stabilitytive of the inability of the finite set of particle velocities
to represent large flow velocities. As the mean velocity while combinations to the left and right of the dotted lines

result in linear instability. We note that the values of a 5increases, the distribution of finite-velocity populations be-
comes increasingly anisotropic. For small velocities we see Fl and b 5 Al used in Ref. [27] lie in the stable domain. Also,

these particular values cause the second viscosity to bethat a corresponding increase in the viscosity allows stabil-
ity to be maintained. However, above the limiting stable identically zero (l 5 0) so that compressible Navier–Stokes

equations (5) and (11) are recovered but the bulk viscosityvelocity, the anisotropy of the population distribution in-
creases in time which decreases entropy in a manner that is equal to the shear viscosity.

The strip of stable eigenvalues in Fig. 4 allows us tois characteristic of numerical instability.
Concluding, the maximum velocity should be small to eliminate the parameter b for subsequent parameter stud-

ies by enforcing a parametric relation with a. We originally(1) retain a stable scheme and (2) keep higher-order terms
from the Chapman–Enskog expansion negligible. Since chose b 5 Af 2 a/3 to fall within the stable strip of values.
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f/2. High Reynolds number flow is obtained by allowing
t to approach the stability boundary of t 5 As, in accordance
with the results for the hexagonal lattice discussed above.

3.4. Fifteen-Velocity Cubic Lattice Results

A simple way to extend the square lattice, with vectors
to the sides and corners of the square, to three dimensions
is to use vectors to the sides and corners of a cube [33, 10,
34]. This defines a body-centered-cubic lattice with eI

i [
(61, 0, 0), (0, 6 1, 0), (0, 0, 61), and eII

i [ (61, 61, 61).
The equilibrium distribution function for these moving
populations and a non-moving population is given by

f (eq)
0 5 an 2

n
2

u2, (28)
FIG. 4. Stability boundaries as function of mass distribution parame-

ters for most unstable wavenumber for t 5 0.5. The region between the
two dotted lines is the stable range for the square lattice for u 5 0.3. f I,(eq)

i 5 bn 1
n
3

(eI
i ? u) 1

n
2

(eI
i ? u)2 2

n
6

u2, (29)
The region between the two solid lines is the stable range for the cubic
lattice for u 5 0.32.

for eI
i along the lattice axes, and

However, this relation plotted as a line on Fig. 4 would
f II,(eq)

i 5
(1 2 6b 2 a)

8
n 1

n
24

(eII
i ? u)

(30)
lie in the center of the stable range when b 5 0 and a 5
Df but when b 5 Af and a 5 0 the line would fall just outside
the stable range. Nonetheless, this relation was used in the 1

n
16

(eII
i ? u)2 2

n
48

u2,
following studies.

The stability boundary for the square lattice is plotted
as the right curve in Fig. 2 when the above parametric for eII

i along the links to the corners of the cube.
As in the case of the nine-velocity 2D model, the firstrelation for b is used, t 5 As, and the most unstable wave-

number is used. From Fig. 4, the parametric relation for numerical study performed on this system addressed the
determination of the most unstable wavenumber. Becauseb indicates instability for u 5 0.3 when a 5 0. This result

can also be seen in Fig. 2 which shows that the neutral of the similarities in the lattice definitions, the most unsta-
ble eigenvalue again occurs at wavenumber equal to 2.3stability boundary at a 5 0 occurs for the velocity just

under 0.3. The most interesting result seen in this figure for unit lattice spacing when t 5 As.
Following the investigation discussed above for the 2Dhowever, is that for values of a greater than about 0.2, the

maximum stable velocity is a constant near Ad. We have not square lattice, the next investigation studied the depen-
dence of stability on the mass distribution parameters abeen able to identify an analytic reason that u 5 Ad is the

stability boundary and is independent of a in the center and b for fixed mean speed and relaxation time for the
most unstable wavenumber. The solid lines in Fig. 4 delin-of the stable parameter strip seen in Fig. 4.

Since the stability is independent of a over a wide range eate the stability boundaries when t 5 0.5 and u 5 0.32.
Combinations of a and b that lie between the two linesof values, we have used the values of Ref. [27] to study

the stability characteristics as the relaxation time is varied. result in linear stability while combinations to the left and
right of the dotted lines result in linear instability. ValuesThe neutral stability boundary is plotted as the middle

curve (dot-dash) in Fig. 3 when a 5 Fl, b 5 Al, and the most of a 5 Ak and b 5 Ak used in Ref. [34] lie near the top and
left of the stable domain seen in Fig. 4.unstable wave number (not necessarily 2.3 when t varies)

is considered. The results are similar to the solid curve in A parametric relation between a and b was chosen to
fall along the strip of stable values from Fig. 4. The relationFig. 3 which was discussed in the hexagonal lattice results.

As t is increased from one-half, the maximum stable mean was b 5 0.2 2 0.3a which lies near the center of the strip
for all values (in contrast with the square lattice relationflow velocity increases monotonically from about one-third

to a value near 0.42 when t is near 0.68. However, the that fell just outside the stable strip for small a values).
Using this relation, the following results were similar tomaximum stable velocity does not change for further in-

creases of t. The kink in the curve is a result of the shift those found in the case of the nine-velocity square lattice.
For t 5 0.5, and k 5 2.3, the linear stability boundaryof the most unstable eigenvalue/wavenumber to another

eigenvalue for which the most unstable wavenumber is was computed for varying a and u. As in the case of the
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2D square lattice, the neutral stability boundary was found (2) Another stability boundary requires the mean flow
velocity to be below a maximum stable velocity that is ato occur for a mean velocity of about one-third indepen-

dent of a. A plot of this curve would appear as a vertical function of the other parameters.
line on top of the square lattice line in Fig. 2. Finally, a (3) As t is increased from one-half, the maximum sta-
stability boundary was found for a 5 Ak and the most unsta- ble velocity increases monotonically until a limit is reached.
ble wavenumber for varying t and u. The resulting stability For the cases studied, the limit was around 0.39, 0.42, and
boundary is plotted as the right curve (dashed) in Fig. 3, 0.47 for the hexagonal, square, and cubic lattices, respec-
verifying that the cubic lattice stability results are very tively.
similar to the square lattice results when the mass distribu-
tion parameters are selected as discussed above. The main These boundaries require all eigenvalues have an abso-

lute value less than or equal to unity for all wavenumbers.difference is that the cubic lattice has a larger maximum
stable mean flow velocity that is near 0.475 for t above Thus, numerical determination of the stability boundaries

requires the determination of the most unstable wavenum-about 0.7.
ber. As parameters are varied for the hexagonal lattice,

4. CONCLUSIONS the wavenumber that has the largest eigenvalue modulus
changes considerably. Therefore, analysis was performed

The lattice Boltzmann equation is viewed as a Lagran- by sweeping through the entire range of wavenumbers
gian finite-difference numerical approximation to the dis- while varying the other parameters. However, for the
crete-velocity Boltzmann equation that makes use of a square and cubic lattices, the most unstable wavenumber
BGK collision operator. The collision serves to relax the was equal to 2.3 for values of t near one-half.
velocity distribution function towards an equilibrium distri- One of the main results from this study is that for the
bution that is selected so that the first few velocity moments hexagonal lattice there is a most stable value of the mass
match those of the Maxwell–Boltzmann distribution. Thus, distribution parameter a 5 Sd which places two-thirds of
models have been developed for which a Chapman– the mass in the nonmoving population. For this value of
Enskog expansion predicts second-order numerical accu- a, the relaxation time t was increased from one-half with
racy for the solution of the incompressible Navier–Stokes the result that the maximum stable velocity increases
equations. In addition to conserving mass and momentum monotonically with an asymptote for large t around
during collision, the aforementioned matching criteria are u 5 0.39.
also required, with the result that entropy is not necessarily Both the square and cubic lattices provide stable behav-
increased during the collision. As a finite difference scheme ior only when the values of the mass distribution parame-
that does not provide an H-theorem for the particle model, ters fall within certain ranges. A parametric relation be-
it is not surprising that numerical instability can and fre- tween a and b can be selected which is consistently stable
quently does arise during simulation. For this reason, a (for the mean flow velocity below some fixed value when
linearized stability analysis was performed on the hexago- t . As). Using this parametric relation, an important result
nal, square, and cubic lattices defined above. of this study is that the maximum stable velocity is indepen-

Linearization of the population fi is performed about an dent of a and, hence, b for a fixed t. As t is increased, as
equlibrium value that does not vary in space or time and with the hexagonal lattice, the maximum stable velocity
depends only on mean density and velocity. We then inves- monotonically increases. However, when t reaches some
tigate whether perturbations in the populations grow or critical value, the most unstable wavenumber switches to
decay. The linear stability of the LB models depends on a new eigenvalue that provides an upper limit on the maxi-
the mass distribution parameters, the mean velocity, the mum stable velocity equal to about 0.42 and 0.47 for the
relaxation time, and the wavenumber. The matrix sizes are square and cubic lattices, respectively.
too large for the analysis to cover all of the parameter These results provide some stability guidelines for re-
space. Thus, numerical evaluation of the eigenvalues of searchers using LB methods. The results provide a neces-
the Jacobian stability matrix was performed for various sary condition for stability but the analysis does not include
parameter values to gain some understanding of the stabil- the effects of boundaries that may serve to destabilize
ity characteristics. simulations. Simulations performed too near the stability

The main stability boundaries common to all three lat- boundaries have been observed to go unstable. A common
tices are the following: manifestation of instability is that as a given flow evolves,

localized regions develop large velocities and instability(1) A well-known stability boundary requires that the
relaxation time be greater than one-half. Note that t 5 As ensues. We note that parameters resulting in stable flow

consistently provide flow speeds and speeds of sound lesscorresponds to zero shear viscosity. Since we are often
interested in high Reynolds number flows, analysis is com- than the lattice spacing divided by the time step. For this

reason, a Courant stability condition is superceded by amonly performed along the stability boundary t 5 As.
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